The unique Alzheimer's β-amyloid triangular fibril has a cavity along the fibril axis under physiological conditions.
نویسندگان
چکیده
Elucidating the structure of Aβ(1-40) fibrils is of interest in Alzheimer's disease research because it is required for designing therapeutics that target Aβ(1-40) fibril formation at an early stage of the disease. M35 is a crucial residue because of its potential oxidation and its strong interactions across β-strands and across β-sheets in Aβ fibrils. Experimentally, data for the three-fold symmetry structure of the Aβ(9-40) fibril suggest formation of tight hydrophobic core through M35 interactions across the fibril axis and strong I31-V39 interactions between different cross-β units. Herein, on the basis of experimental data, we probe conformers with three-fold symmetry of the full-length Aβ(1-40). Our all-atom molecular dynamics simulations in explicit solvent of conformers based on the ssNMR data reproduced experimental observations of M35-M35 and I31-V39 distances. Our interpretation of the experimental data suggests that the observed ∼5-7 Å M35-M35 distance in the fibril three-fold symmetry structure is likely to relate to M35 interactions along the fibril axis, rather than across the fibril axis, since our measured M35-M35 distances across the fibril axis are consistently above 15 Å. Consequently, we revealed that the unique Aβ(1-40) triangular structure has a large cavity along the fibril axis and that the N-termini can assist in the stabilization of the fibril by interacting with the U-turn domains or with the C-termini domains. Our findings, together with the recent cyroEM characterization of the hollow core in Aβ(1-42) fibrils, point to the relevance of a cavity in Aβ(1-40/1-42) oligomers which should be considered when targeting oligomer toxicity.
منابع مشابه
Structural and fluctuational difference between two ends of Aβ amyloid fibril: MD simulations predict only one end has open conformations
Aβ amyloid fibrils, which are related to Alzheimer's disease, have a cross-β structure consisting of two β-sheets: β1 and β2. The Aβ peptides are thought to be serially arranged in the same molecular conformation along the fibril axis. However, to understand the amyloid extension mechanism, we must understand the amyloid fibril structure and fluctuation at the fibril end, which has not been rev...
متن کاملCopper prevents amyloid-β1–42 from forming amyloid fibrils under near-physiological conditions in vitro
The aggregation and deposition of amyloid-β((1-42) )(Aβ(42)) in the brain is implicated in the aetiology of Alzheimer's disease (AD). While the mechanism underlying its deposition in vivo is unknown its precipitation in vitro is influenced by metal ions. For example, Aβ(42) is known to bind copper, Cu(II), in vitro and binding results in aggregation of the peptide. The biophysical properties of...
متن کاملStructural origin of polymorphism of Alzheimer's amyloid β-fibrils.
Formation of senile plaques containing amyloid fibrils of Aβ (amyloid β-peptide) is a pathological hallmark of Alzheimer's disease. Unlike globular proteins, which fold into unique structures, the fibrils of Aβ and other amyloid proteins often contain multiple polymorphs. Polymorphism of amyloid fibrils leads to different toxicity in amyloid diseases and may be the basis for prion strains, but ...
متن کاملStability and Structure of Amyloid-Forming Peptides from Computer Simulation
Proteins and peptides can fold into their unique 3-dimensional (3D) structures to perform their biological functions, or they can misfold to form insoluble amyloid fibrils, which are highly ordered protein aggregates currently known to be associated with more than 20 neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, diabetes type II, and various prion diseases (1-4)....
متن کاملNon-Esterified Fatty Acids Generate Distinct Low-Molecular Weight Amyloid-β (Aβ42) Oligomers along Pathway Different from Fibril Formation
Amyloid-β (Aβ) peptide aggregation is known to play a central role in the etiology of Alzheimer's disease (AD). Among various aggregates, low-molecular weight soluble oligomers of Aβ are increasingly believed to be the primary neurotoxic agents responsible for memory impairment. Anionic interfaces are known to influence the Aβ aggregation process significantly. Here, we report the effects of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 8 شماره
صفحات -
تاریخ انتشار 2011